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Abstract. A new quantum electrodynamical method of calculations of bremsstrahlung spectra in the α-
decay of heavy nuclei taking into account the angle between the directions of α-particle motion (or its
tunneling) and photon emission is presented. The angular bremsstrahlung spectra for 210Po have been
obtained for the first time. According to calculations, the bremsstrahlung in the α-decay of this nucleus
depends extremely weakly on the angle. Taking into account nuclear forces, such dependence is not changed
visibly. An analytical formula of the angular dependence of the bremsstrahlung spectra is proposed and
gives its harmonic behavior. The extremal values of the angle, at which the bremsstrahlung has maximal
and minimal values, have been found.

PACS. 23.60.+e Alpha decay – 41.60.-m Radiation by moving charges – 23.20.Js Multipole matrix ele-
ments – 03.65.Xp Tunneling, traversal time, quantum Zeno dynamics

1 Introduction

Experiments [1–3] with measurements of bremsstrahlung
(Br) spectra in the α-decay of the nuclei 210Po, 214Po,
226Ra and 244Cm have caused an increased interest. One
of the key ideas of the fulfillment of such experiments con-
sists in finding a method of extraction of a new informa-
tion about α-decay dynamics from the Br spectra (and
a detailed information about the dynamics of tunneling).
One can note a certain difference between the Br spec-
tra [1] and [2,3] for 210Po, obtained experimentally for the
values 90◦ and 25◦ of the angle between the directions of
the α-particle propagation and the photon emission (these
experiments and the difference of their spectra are dis-
cussed in [4,5]). One can explain such difference between
the Br angular spectra on the basis of the following idea:
the Br intensity depends on the directions of emission of
the photons and motion (with possible tunneling) of the α-
particle relatively to the daughter nucleus. In such a way, a
three-dimensional picture of the α-decay with the accom-
panying Br in the spatial region of nuclear boundaries has
been devised.

However, if the Br intensity varies enough visibly with
changing the angle value, then one can suppose, that the
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photon emission is able to influence essentially the α-decay
dynamics and, therefore, to change all of its characteris-
tics. From this point of view, the discussions [4,5] open a
way for obtaining a new information about the α-decay
—through the angular analysis of the Br during the α-
decay. But for such researches a model describing the Br
in the α-decay, which takes into account the value of the
angle between the directions of the α-particle propagation
(or tunneling) and the photon emission, is needed.

In the theoretical aspects, some progress has been
made here. One can note models of calculations of the Br
spectra in the α-decay, developed on the basis of quantum
electrodynamics with use of perturbation theory: the first
paper [6] where a general quantum-mechanical formalism
of the calculation of the Br spectra in the α-decay is
proposed and the Br spectrum for 210Po inside the
photons energy region up to 200 keV was estimated (even
until the fulfillment of the first experiments); essentially
improved models in the dipole approximation [7,8] and
in the multipolar expansion [9] of photons current (wave
function) with application of the Fermi golden rule;
an approach [10] of the calculation of the Br spectra
with realistic barriers of the α-decay, models [11–13,8]
developed in semiclassical approximation (see also the Br
spectra calculations in [3]), instant accelerated models [1,
9] constructed on the basis of classical electrodynam-
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ics (see also [12]), methods [13–15,11,12], directed on a
non-stationary description of the α-decay with the accom-
panying Br and the calculations of such non-stationary
characteristics as tunneling time. One can recall also
papers [16–19] with study of dynamics of subbarrier tun-
neling in the α-decay; an effect, first described in [20] and
named Münchhausen effect, which increases the barrier
penetrability due to charged-particle emission during its
tunneling and which can be extremely interesting for fur-
ther study of the photon bremsstrahlung during subbarier
tunneling in the α-decay. However, one needs to say that
at this stage the calculations of the Br spectra by all
these approaches are reduced to obtaining their integral
(or averaged by angles) values and, therefore, they do not
allow to fulfill an angular analysis of the experimental Br
spectra (here, one can quote an approach in [14] based
on classical electrodynamics, which shows a way for
obtaining the angular spectra (see (15) and (17), p. 999),
however here we shall use the direct quantum-mechanical
approach of the Br spectra calculation, which describes
the quantum effect of the subbarrier Br more precisely).

In [21] we had developed a multipolar method which
takes into account the angle between the directions of the
α-particle propagation and the photon emission. But the
angular integrals used in this method are difficult enough
to be obtained and some approximations are used, there
was a convergence problem with the calculations of mul-
tipoles of larger orders, only the angular dependences of
the matrix elements of the selected multipoles E1 andM1
were found, while it is interesting to know also the angular
dependence of the total Br spectra. Moreover, computer
calculations of the Br spectra and their angular analysis
will be essentially more complicated, if one passes from the
type of the potential used in this paper (and also in [7,9])
to realistic potentials. In this sense, the approach proposed
in [21] is not convenient enough.

In this paper we present a new method for the angu-
lar calculations of the Br spectra in the α-decay of nu-
clei (started in [22], with the resolution of a convergence
problem in the Br spectra calculations existing in [22]).
In our approach we introduce a simplified transformation,
which reduces the complicated angular formalism of the
calculation of the Br spectra (presented in [21]) to a max-
imally simple form (this makes the method clearer and
more comprehensible), with keeping the calculating accu-
racy as good as possible, where only one angle from all
angular parameters is used —the angle used in experi-
ments [4,5] for 210Po. We show that this proposed trans-
formation works in the low-energy region of photons and,
therefore, it can be applied to the analysis of all up to now
existing experimental data of Br spectra in the α-decay of
spherical nuclei (we relate 210Po to them). In this paper
we present the results of the calculations of the angular
spectra of the Br in the α-decay for 210Po (the Br an-
gular spectra in the α-decay have been obtained for the
first time). We show how the Br spectra are changed af-
ter deformation of the form of the α-decay barrier as a
result of the correction of a component of the α-nucleus
potential of nuclear forces (we did not find such calcula-

tions in other papers). An analysis of the problem of the
calculations convergence of the Br spectra in the α-decay
is included in the paper, whose resolution plays a key role
for obtaining of the reliable values of the spectra.

2 A formalism of the calculations of the

bremsstrahlung spectra in the stationary

approach

We shall consider the decay of the nucleus as a decay of
the compound quantum system: α-particle and daughter
nucleus. The α-particle is the electrically charged particle
and during its motion inside the electromagnetic field of
the daughter nucleus it emits photons. The spontaneous
emission of the photon changes the state of the compound
system, which is described by its wave function. For a
quantitative estimation of the Br of photons we use a
transition of the system from its state before the photon
emission (we name such state the initial i-state) into its
state after the photon emission (we name such state the
final f -state). One can define a matrix element of such
transition of the system and on its basis find the Br prob-
ability during the α-decay (for convenience, we denote it
as W (w)). According to [21], we obtain

W (w) = N0kfw
∣

∣p(w)
∣

∣

2
, N0 =

Z2effe
2

(2π)4m
,

ki,f =
√

2mEi,f , w = Ei − Ef , (1)

where p(w) has the form

p(w) =
∑

α=1,2

e
(α)∗

+∞
∫

0

dr

∫

r2ψ∗
f (r)e

−ikr
∂

∂r
ψi(r)dΩ. (2)

Here Zeff and m are the effective charge and the reduced
mass of the system, Ei,f , ki,f and ψi,f (r) are the total
energy, wave vector and wave function of the system in
the initial i-state or in the final f -state (according to the
index i or f in use), ψi(r) and ψf (r) are the wave func-
tion of the system in the initial i- and the final f -states,
e
(α) is the polarization vector of the photon emitted, k is

the photon wave vector, w = k =
∣

∣k
∣

∣ is the photon fre-

quency (energy). The vector e
(α) is perpendicular to k in

the Coulomb calibration. We use the following system of
units: h̄ = 1 and c = 1. Notations used are in accordance
with [21]. Similar expressions for the Br probability are
used in [7–9] with further application of the Fermi golden
rule.

In accordance with the main statements of quantum
mechanics, the wave functions of the system in the states
before and after the photon emission are defined inside
all the space region, including the region of the subbarrier
tunneling. A definition of the matrix element of the tran-
sition of this system requires the consideration of all the
space region of the definition of the wave functions of this
system in the two states. Therefore, we should include the
tunneling region into the definition of the matrix element
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of the Br, irrespective of whether we know that the photons
emission is possible during tunneling or not.

Let us consider a subintegral expression in (2). Here,
the wave function ψi(r) for the initial i-state and the wave
function ψf (r) for the final f -state take into account the
directions of propagation (or tunneling) of the α-particle
before the photon emission and after it, respectively; the
photons wave function (its main part consists in the expo-
nent exp (−ikr)) points to the direction of propagation of
the emitted photon. We see that the quantum-mechanical
approach for the calculation of the Br spectra initially
gives a detailed angular information about the process of
α-decay with the accompanying Br.

However, we see that a further development of the ap-
proach for the calculations of the Br spectra in the α-
decay on the basis of formulas (1) and (2) by other au-
thors (which consists in the calculations of p(w)) gives
rise to angular averaging of the spectra. And the necessity
aroused of constructing an approach, which allows to cal-
culate the Br spectra simply enough (with a possible solu-
tion of the convergence problem in computer calculations)
by taking into account the angle between the directions of
the α-particle propagation (with possible tunneling) and
the photon emission and without (essentially) decreasing
the accuracy.

3 A simplified angular method of the matrix

element calculation

In [22] an approach for the calculation of the Br spec-
tra, allowing to find the dependence of the total Br spec-
tra on the angle between the directions of the α-particle
propagation (or tunneling) and the photon emission, was
proposed. However, further research has shown that it is
extremely difficult to achieve a convergence in the com-
puter calculations of the Br spectra by such approach and,
therefore, such a method requires a special development.
Here, we propose a subsequent statement of this approach
with a resolution of the convergence problem.

Let us rewrite the polarization vectors e
α through the

vectors ξ−1 and ξ+1 of circular polarization with opposite
directions of rotation (see [23], p. 42):

ξ−1 =
1√
2
(e1 − ie2), ξ+1 = −

1√
2
(e1 + ie2). (3)

Substituting these values into (2), we obtain

p(w) =
∑

µ=−1,1

hµξ
∗
µ

+∞
∫

0

dr

∫

r2ψ∗
f (r)e

−ikr
∂

∂r
ψi(r)dΩ,

(4)
where

h−1 =
1√
2
(1− i), h1 = −

1√
2
(1 + i),

h−1 + h1 = −i
√
2. (5)

Using the following properties (see [23] p. 44–46, [21]):

∂

∂r
ψi(r) = −

dψi(r)

dr
T01,0(n

i
r),

T01,0(n
i
r) =

∑

µ=−1,1

(110| − µµ0)Y1,−µ(nir)ξµ,

(110|1,−1, 0) = (110| − 1, 1, 0) =

√

1

3
,

(6)

where (110| − µµ0) are Clebsch-Gordan coefficients and
Tll′,µ(n) are vector spherical harmonics (see [23], p. 45
and we use quantum numbers l = m = 0 in the ini-
tial i-state), Y1,µ(n

i,f
r ) are normalized spherical functions

(see [24], p. 118–121 (28.7), p. 752–755), we obtain

∂

∂r
ψi(r) = −

dψi(r)

dr

√

1

3

∑

µ′=−1,1

Y1,−µ′(nir)ξµ′ . (7)

Taking into account (4), (7) and the ortogonality condition
of the polarization vectors ξ∗±1 and ξ∓1, we find

p(w) = −
√

1

3

∑

µ=−1,1

hµ

+∞
∫

0

drr2ψ∗
f (r)

∂ψi(r)

∂r

×
∫

Y ∗
l′m′(nfr )Y1,−µ(n

i
r)e

−ikrdΩ, (8)

where ψf (r) = ψf (r)Yl′,m′(nfr ).
Let us consider the vectors k and r. The vector k is

an impulse of the photon, pointing out its direction of
propagation. The vector r is a radius-vector, pointing out
the position of the α-particle relatively to the center of
mass of the daughter nucleus and (because the mass of
the daughter nucleus is sufficiently larger than the mass
of the α-particle) pointing out the direction of its motion
(or tunneling). Then the angle between the vectors k and
r (let us denote it as β) is the angle between the direction
nr = r/r of motion (or tunneling) of the α-particle and
the direction nph = k/k of the propagation of the emitted
photon, i.e. it is the angle used in the experiments [4,3,
1]. One can write

exp (−ikr) = exp (−ikr cosβ), k = |k|, r = |r|. (9)

Now we make the following assumptions:

– the photon emission process does not change the di-
rection of motion (or tunneling) of the α-particle:

n
i
r = n

f
r , (10)

– the angle β is not dependent on the direction of motion
of the α-particle outgoing from the nucleus region.

Then, taking into account these assumptions and the or-
togonality property of the functions Ylm(nr), we obtain
the following expression for p(w, β):

p(w, β) = −
√

1

3

∑

µ=−1,1

hµ

+∞
∫

0

r2ψ∗
f (r)

∂ψi(r)

∂r
e−ikr cos βdr

(11)
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and the following selection rules for the quantum numbers
l and m of the final f -state:

the initial state: li = 0, mi = 0;
the final state: lf = 1, mf = −µ = ±1. (12)

4 Spherical wave expansion

For further computer calculations of the integral (11), let
us use an expansion of the plane wave in the spherical
waves (for example, see [24], p. 144, (34.1)):

eikz =
+∞
∑

l=0

(−i)l(2l + 1)Pl(cosβ)

(

r

k

)l(
1

r

d

dr

)l
sin kr

kr
,

(13)
where z = r cosβ. Introducing the spherical Bessel func-
tions (see [24], p. 139, (33.9), (33.10) and (33.11))

jl(kr) = (−1)l
(

r

k

)l(
1

r

d

dr

)l
sin kr

kr
, (14)

we obtain

e−ikr cos β=

(

eikr cos β
)∗

=
+∞
∑

l=0

il(−1)l(2l+1)Pl(cosβ)jl(kr)

(15)
and from (11) we find

p(w, β) = −
√

1

3

+∞
∑

l=0

il(−1)l(2l + 1)Pl(cosβ)

×
∑

µ=−1,1

hµJmf
(l, w), (16)

where

Jmf
(l, w) =

+∞
∫

0

r2ψ∗
f (r)

∂ψi(r)

∂r
jl(kr)dr. (17)

Jmf
(l, w) is a radial integral, independent of the angle β.

Now we obtain an explicit analytical dependence of the
matrix element p(w, β) on the angle β between the direc-
tions of the α-particle propagation and the photon emis-
sion (for the first time, in [21] the angular integrals were
obtained for selected components of this matrix element
—multipoles E1 and M1 only, with use of more difficult
calculations).

5 The bremsstrahlung in the Coulomb field

Practically, in the numerical calculation of the Br spec-
tra it is convenient to divide the whole region of the
integration into two parts: region 1 of a joint action of
the Coulomb and nuclear forces not far from the nucleus
and region 2, in which one can neglect the action of
the nuclear forces in comparison with the action of the

Coulomb forces. Our analysis has shown that the attain-
ment of the convergence of the Br spectra calculations
(which determines their accuracy, reliability of the found
Br spectra) is reached first of all by the correctness of
the calculations in the region 2. Namely, in this region
one needs to solve the problem of the definition of the
external boundary of integration (its increasing leads to
an increase of the accuracy of the obtained spectra, but
also to an increase of the difficulty of the calculations and
analysis), to choose the most effective method of numeri-
cal integration (of an improper integral with an oscillating
and weakly damping sub-integral function), to solve the
problem with the attainment of the needed accuracy and
convergence of the calculations. This defines the time
necessary for the calculations, minimization of which
appears extremely important for the fulfillment of the
real analysis of the obtained Br spectra in dependence on
the needed parameters. Therefore, maximal simplification
of the formulas for the Br spectra in region 2 is in order.

Let us assume that the potential, used in the calcula-
tion of wave functions for the initial i- and final f -states
in the radial integral (17), in the spatial region of r is of
pure Coulomb type since the value Rc. We accept Rc as
the internal boundary of region 2. One can write the radial
integral J(l, w) in (17) in this way

Jmf
(l, w) = Jin,mf

(l, w) + Jc(l, w), (18)

where

Jin,mf
(l, w) =

Rc
∫

0

r2ψ∗
f (r,mf )

∂ψi(r)

∂r
jl(kr)dr,

Jc(l, w) =

+∞
∫

Rc

r2ψ∗
f (r)

∂ψi(r)

∂r
jl(kr)dr.

(19)

The radial integral Jc(l, w) does not depend on the quan-
tum number m of the systems in the final f -state. Then,
one can write p(w, β) in this way (taking into account (5)
for the Coulomb component):

p(w, β) = pin(w, β) + pc(w, β), (20)

where

pin(w, β) = −
√

1

3

+∞
∑

l=0

il(−1)l(2l + 1)Pl(cosβ)

×
∑

µ=−1,1

hµJin,mf
(l, w),

(21)

pc(w, β) =

√

2

3

+∞
∑

l=0

il+1(−1)l(2l + 1)Pl(cosβ)Jc(l, w).

We see that there is not any interference between the com-
ponents pin(w, β) and pc(w, β) in the calculations of the
total value of p(w, β), but it exists in calculations of the
total Br spectra.
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6 The first approximation at l = 0

Legendre’s polynomial of the order l equals (for example,
see [24], p. 752 (c.1))

Pl(θ) =
1

2ll!

dl

(dθ)l
(θ2 − 1)l,

P0(θ) = 1, P1(θ) = θ, θ = cosβ.

(22)

Then at l = 0, we find

p
(l=0)
in (w, β) = −

√

1

3

∑

µ=−1,1

hµJin,mf
(0, w),

p
(l=0)
c (w, β) = i

√

2

3
Jc(0, w).

(23)

If for nuclei 210Po, 214Po, 226Ra one uses the potential
with parameters as in [21] (and also as in [7,9]), then we
find that Br from the internal spatial region up to Rc is
extremely small (pin(w, β)¿ pc(w, β)). According to our
estimations, for such potential the Br is 10−22–10−24 times
smaller than the Br from the external region. Therefore,
one can neglect the Br from the internal region, and the
total Br can be determined by the Coulomb field inside
the barrier region and the external region. From (1) we
write down the Br probability in the first approximation
at l = 0:

Wl=0(w) = N0kfw
∣

∣p(l=0)c (w, β)
∣

∣

2
=

2

3
N0kfw

∣

∣Jc(0, w)
∣

∣

2
.

(24)

One can conclude that (this has been obtained for the
first time):

– The Br probability in the first approximation at l = 0,
formed by the Coulomb field both taking into account
nuclear forces of any shape, and without such forces,
does not depend on the value of the angle β between
the directions of the α-particle propagation (or its tun-
neling) and the photon emission.

– The Coulomb field is degenerated by the quantum
number m. This property distinguishes the Coulomb
field from the nuclear forces under consideration in
the model. This difference is shown in the matrix
elements (23). The nuclear forces participate in the
formation of the decay barrier and, therefore, one
can consider them approximately as forces working
in the spatial region of the barrier, where there is
a tunneling. One can assume that one can divide
the emissions from the barrier region and from the
external region on the basis of the quantum number
mf . It would be interesting to find a possible way of
extraction of the Br spectrum from the barrier region
(or from the external region) from the experimental
Br spectrum on the basis of this property.

7 The second approximation at l = 1

Taking into account (22), we find the Br probability in the
second approximation at l = 1:

p
(l=1)
in (w, β) = i

√
3 cosβ

∑

µ=−1,1

hµJin,mf
(1, w),

p
(l=1)
c (w, β) =

√
6 cosβJc(1, w).

(25)

Neglecting Br from the internal region, we obtain the
following expressions for the component of the Br proba-
bility of the second approximation at l = 1:

W (l=1)(w, β) = N0kfw
∣

∣

∣
p(l=1)c (w, β)

∣

∣

∣

2

=

6N0kfw
∣

∣

∣
Jc(1, w)

∣

∣

∣

2

cos2 β (26)

and for the total Br probability in the second approxima-
tion at l = 1:

Wl=1(w, β) =Wl=0(w)
∣

∣

∣
1−N(w) cosβ

∣

∣

∣

2

,

N(w) = 3i
Jc(1, w)

Jc(0, w)
.

(27)

One can conclude that (this has been found for the
first time):

– The dependence of the Br probability in the α-decay
on the value of the angle β between the directions of
the α-particle propagation (or its tunneling) and the
photon emission is of harmonic type (27).

– The consideration of the nuclear forces does not change
the dependence of the Br probability in the second
approximation at l = 1 on such angle value.

– Equations (27) allow to analitically determine maxima
and minima in the Br spectra as a function of the angle
β.

8 Convergence of calculations in the

asymptotic region

There is a considerable difficulty in the calculations of the
Br spectra for a given nucleus, related to obtaining the
radial integrals (19) (or (17)). This difficulty is caused by
the fact that such integral is improper, and its sub-integral
function is oscillating and damping slowly with increasing
r. The function damps weaker with increasing r, the larger
region of integration should be taken into account in the
numerical integration. For 210Po the damping degree of
the sub-integral function is such that for reliable values of
the first 2-3 digits for the Br spectrum one needs to take
into account (with the highest accuracy of calculation) 1
million oscillations of this function.

As an evident demonstration of this problem, let us
consider the one-dimensional integral:

+∞
∫

a

sinx

x
dx. (28)



288 The European Physical Journal A

An exact analytical value of this integral at a = 0, equal
to π/2, is known from the complex variable function the-
ory. The numerical calculation of the integral (with the
use of the simple method of trapeziums, the method of
Gauss or other methods of numerical integration) allows
to quickly obtain the same result also, but with a given de-
gree of accuracy (which determines the region of numerical
integration). This proves a convergence of the computer
calculations of such integral with a concrete choice of the
parameter a. But at weak increasing of the parameter a
the region of numerical integration for obtaining the same
calculation accuracy for integral (28) increases remark-
ably, and, therefore, the difficulty to calculate this integral
numerically increases accordingly. However, the applica-
tion of the method of the complex variable function theory
makes the calculation of such integral simpler again. So, in
the example of the simple integral (28) one can meet with
the numerical problem of the convergence of the calcula-
tions of the improper integrals with the slowly damping,
oscillating sub-integral functions.

We perform the analysis of the convergence of the cal-
culation of the integral (19) on the basis of the analysis of
the damping of its sub-integral function in the asymptotic
region, which is defined by wave functions in the initial i-,
final f -states and the by the spherical Bessel function of
order l.

For large enough values of r one can use an asymptotic
representation of the spherical Bessel function of order l:

j
(as)
l (kr) =

1

kr
sin

(

kr − πl

2

)

, (29)

or

j
(as)
2n (kr) = (−1)nj(as)0 (kr) = (−1)n sin kr

kr
,

j
(as)
2n+1(kr) = (−1)nj(as)1 (kr) = (−1)n+1 cos kr

kr
.

(30)

where n is a natural number.
The wave functions ψi(r) and ψf (r) of the initial i- and

the final f -states are linear combinations of the Coulomb
functions Fl(η, ρ) and Gl(η, ρ) (divided by ρi,f , with quan-
tum number l = 0 or l = 1 for the initial i- or the final
f -state, respectively). One can write the Coulomb func-
tions for l in the asymptotic region in this way:

Fl(η, ρ) = sin θl, Gl(η, ρ) = cos θl, (31)

where

θl = ρ− η log 2ρ+ 1

2
πl + σl(η), ρi,f = ki,fr,

σl(η) = argΓ (iη + l + 1), ηi,f =
mν

ki,f
,

(32)

where Γ (x) is gamma-function with argument x, ν is
Zomerfield parameter.

Now one can conclude that:

– The spherical Bessel function j
(as)
l (kr) in the asymp-

totic region damps (and oscillates) with increasing r
equally for any order l.

– The Coulomb functions F0(ηi, ρi) and G0(ηi, ρi) of or-
der 0 for the initial i-state and the Coulomb functions
F1(ηf , ρf ) and G1(ηf , ρf ) of order l = 1 for the final
f -state damp equally in the asymptotic region with
increasing r, oscillate equally and are shifted by one
phase between each other.

– The total sub-integral function of the integral (19) in
the asymptotic region equally damps with increasing
r for any order l.

Taking into account (19) and (30), we obtain

J
(as)
c (2n,w) = (−1)nJ (as)c (0, w),

J
(as)
c (2n+ 1, w) = (−1)nJ (as)c (1, w).

(33)

I.e. one can reduce any integral inside the asymptotic re-
gion to one of two integrals J (as)(0, w) and J (as)(1, w).

Let us find the matrix element p
(as)
c (w, β) in the

asymptotic region:

p
(as)
c (w, β) = i

√

2

3
J
(as)
c (0, w)

(

+∞
∑

n=0

(4n+ 1)P2n(cosβ)

)

+

√

2

3
J
(as)
c (1, w)

(

+∞
∑

n=0

(4n+ 3)P2n+1(cosβ)

)

.

(34)
Thus, we reduce formula (11) for the Br spectra to a linear
combination of two radial integrals, which are convergent
(one can calculate them with a desirable accuracy limited
by the effective calculations accuracy of the computer)
and do not depend on the angle, and factors-sums on n,
by which the problem of convergence is carried out (one
can meet with them in (11)).

It would seem that one can cut off the region of numer-
ical integration in one boundary R for the calculation of
the integral Jc(l, w) from (19) for any l. However, the cal-
culation convergence of the integral is determined not only
by the damping of the sub-integral function at large r, but
also by its behavior on the whole integration region. An
analysis has shown that the sub-integral function inside
the barrier region and inside the external region closer to
the barrier behaves so that the calculation of the total inte-
gral becomes more and more sensible to it with increasing
l and the calculation convergence becomes worse. There-
fore, for obtaining reliable values of the integrals Jc(l, w)
(with the same accuracy) it is necessary to increase the
external boundary R of the integration region for larger l
(such a conclusion has been obtained by us in calculating
the angular Br spectra for 210Po also).

9 Angular calculations for the Br spectra in

the α-decay of 210Po

As a demonstration of the method described above, let us
calculate the angular Br spectra in the α-decay of 210Po.
For a comparison of the results obtained in such approach,
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Table 1. Angular values of the Br probability in the α-decay of 210Po in the approximation at l = 1.

w, Wl=1(w, β), 1 / keV / decay ∆W1, ∆W2

keV β = 0◦ β = 15◦ β = 30◦ β = 45◦ β = 60◦ β = 75◦ β = 90◦ 1/keV/dec.

50 1.641E-08 1.635E-08 1.617E-08 1.589E-08 1.553E-08 1.511E-08 1.467E-08 1.735E-09 11.8

100 4.974E-09 4.953E-09 4.892E-09 4.796E-09 4.673E-09 4.531E-09 4.381E-09 5.928E-10 13.5

150 1.897E-09 1.890E-09 1.869E-09 1.836E-09 1.793E-09 1.744E-09 1.692E-09 2.047E-10 12.1

200 8.021E-10 7.993E-10 7.912E-10 7.783E-10 7.618E-10 7.427E-10 7.226E-10 7.949E-11 11.0

250 3.548E-10 3.534E-10 3.493E-10 3.429E-10 3.346E-10 3.250E-10 3.149E-10 3.993E-11 12.7

300 1.611E-10 1.605E-10 1.585E-10 1.554E-10 1.515E-10 1.469E-10 1.421E-10 1.901E-11 13.4

350 7.628E-11 7.590E-11 7.480E-11 7.306E-11 7.082E-11 6.826E-11 6.557E-11 1.071E-11 16.3

400 3.251E-11 3.236E-11 3.194E-11 3.127E-11 3.042E-11 2.943E-11 2.840E-11 4.110E-12 14.5

450 1.278E-11 1.275E-11 1.266E-11 1.252E-11 1.234E-11 1.213E-11 1.191E-11 8.716E-13 7.3

500 6.094E-12 6.077E-12 6.030E-12 5.956E-12 5.860E-12 5.749E-12 5.632E-12 4.615E-13 8.2

550 3.198E-12 3.179E-12 3.124E-12 3.038E-12 2.928E-12 2.802E-12 2.671E-12 5.271E-13 19.7

600 1.624E-12 1.612E-12 1.578E-12 1.524E-12 1.455E-12 1.378E-12 1.297E-12 3.266E-13 25.2

650 5.731E-13 5.712E-13 5.656E-13 5.569E-13 5.456E-13 5.326E-13 5.189E-13 5.422E-14 10.5

700 2.198E-13 2.186E-13 2.150E-13 2.094E-13 2.023E-13 1.942E-13 1.858E-13 3.398E-14 18.3

750 9.515E-14 9.445E-14 9.240E-14 8.920E-14 8.512E-14 8.050E-14 7.571E-14 1.944E-14 25.7

800 2.409E-14 2.411E-14 2.418E-14 2.430E-14 2.446E-14 2.467E-14 2.490E-14 −8.094E-16 3.3

with results obtained by models [7,9,8], we shall choose
the potential parameters as in [21] (they coincide with the
parameters of the potential with the external Coulomb
field in [9] and in [7]).

In spite of the fact that there are methods that allow to
calculate absolute values of the Br spectra, in this paper
at first we shall find the relative values of the Br spectrum
for the given nucleus and then we shall normalize the ob-
tained spectra at one selected point of the Br experimental
spectrum for the given angle value. This approach in com-
parison to the previous one allows to analyze a behavior
of the Br spectra in dependence on the angle with a larger
accuracy (besides being easier to apply).

In the beginning we calculate the total Br probabil-
ity in the second approximation at l = 1 for the 90◦ an-
gle taking into account (24) (because the component of
the Br probability (26) in the second approximation at
l = 1 equals zero at such angle). Then we normalize the
obtained spectrum by the third point of the experimen-
tal data [1] (we have values such as w = 0.179 keV and
W = 10.1 · 10−10 1 / keV / decay), which were also ob-
tained for the angle β = 90◦. Knowing the normalized
factor and using formulas (27), we find the Br probability
in the second approximation for the other values of the
angle β.

The angular values of the Br probability in the second
approximation at l = 1 are shown in table 1. Here, one
can see a variation of the Br probability as a function of
the angle β, however this change is extremely small. The
Br probability in the first approximation at l = 0 coin-
cides with the Br probability in the second approximation
at l = 1 for the 90◦ angle. One can see that the contri-
bution of the Br probability in the first approximation
to the total spectrum is the largest for any angle value,
i.e. it is extremely larger than the contribution to the to-

Fig. 1. The Br spectra in the α-decay of 210Po: 1 is the curve,
extracted from [9] by the instant accelerated model; 2 is the
experimental data [1,4]; 3 is the experimental data [3]; 4 is the
curve of the Br probability Wl=1 in the first approximation
at l = 1 by our approach at β = 90◦; 5 is the curve of the
Br probability componentW (l=1) in the first approximation at
l = 1 at the angle 45◦ by our approach; 6 is the curve calculated
by us with the radial integral (6) and the formula dψi(r)/dr =
−ψi(r)/w dV (r)/dr (it coincides with the radial integral (7)
in [9] with a factor −1/w) and further normalization at the
third point of data [1,4]; 7 is the curve calculated on the basis
of the potential (39)–(41).

tal spectrum of the component of the Br probability in
the second approximation at l = 1. This conclusion has a
physical sense (obtained for the first time): the Br in the
α-decay for 210Po depends extremely weakly on the value
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of the angle between the directions of the α-particle prop-
agation (or tunneling) and the photon emission (in the
given approach). The account of the non-zero component
of the Br probability in the second approximation (for an-
gle values which are different from 90◦) increases the total
Br probability. Absolute and relative variations of the Br
probability relatively to its maximal and minimal values,

∆W1(w) = Wl=1(w, β = 0◦)−Wl=1(w, β = 90◦),

∆W2(w) =
|Wl=1(w, β = 0◦)−Wl=1(w, β = 90◦)|

Wl=1(w, β = 90◦)
· 100,
(35)

are also included into the table.
The results of the calculations of the Br probability in

the α-decay of 210Po in the second approximation at l = 1
by our approach are shown in fig. 1.

From the figure one can see, that for the 90◦ angle our
method gives a Br spectrum, which is very close to the Br
spectra obtained by the models [7] and [9]. However, with
respect to the models [7,9] our method shows an angular
variation of the Br spectra.

10 An analysis of the maxima and minima in

the angular Br spectra

Let us find the values of the angle β between the directions
of the α-particle propagation (or tunneling) and the pho-
ton emission, at which the Br probability has the maximal
and minimal values. Using the derivative

dWl=1(w, β)

dβ
= Wl=0(w)

(

N∗(w)

+N(w)− 2|N(w)|2 cosβ
)

sinβ, (36)

we find the conditions of extremal values of the function
Wl=1(w, β):

sin(β) = 0,

cos(β) =
N∗(w) +N(w)

2|N(w)|2 =
Re(N(w))

Re(N(w))2 + Im(N(w))2
.

(37)
Calculations for 210Po for the given potential have

shown that the second condition in (37) in the range
w = 50–800 keV is not fulfilled. One can explain this by
the fact that the integral Jc(1, w) is smaller than the inte-
gral Jc(0, w) by 102–104 times (that is in agreement with
the condition of the convergence of the Br spectra with
increasing l). From the first condition in (37) we obtain
these extremal values for the angle β:

β = 0, π. (38)

The Br probability at such angle values has respectively
the maximal and minimal values, and for angle values in-
side that range it varies monotonously for any energy of
the photon emitted in the range w = 50–800 keV. One can
see this also from table 1.

11 Inclusion of Woods-Saxon potential into

the model

Now let us analyze how the Br spectrum in the α-decay
of the studied nucleus 210Po changes, if in the approach
for calculations of the Br spectra from the interaction po-
tential between the α-particle and the daughter nucleus
—pointed out in sect. 9 and having a simplified barrier—
one passes to a potential with a barrier, constructed on the
basis of the consideration of the realistic nuclear forces of
interaction between the α-particle and the daughter nu-
cleus, which is used in realistic nuclear models.

To such a purpose, we shall take the potential proposed
in [25] for the description of the α-decay and the synthesis
of nuclei. Among the extensive set of literature giving us
different types of the α-nucleus potentials, we have given
preference to such a paper because there we see a univer-
sal and clear approach for the calculation of parameters
of the potential after the choice of the desired nucleus.
As a result, we suppose to obtain a universal recipe for
calculation of the Br spectra after choosing the nucleus.

So, according to [25] (see (6)–(10)), we use this inter-
action potential:

V (r, θ, l, Q) = VC(r, θ) + VN (r, θ,Q) + Vl(r), (39)

where

VC(r, θ) =
2Ze2

r

(

1 +
3R2

5r2
βY20(θ)

)

,

VN (r, θ,Q) =
v(A,Z,Q)

1 + exp
r − r0
d

,

Vl(r) =
l(l + 1)

2mr2
.

(40)

At the current stage (with the purpose to simplify the
numerical calculations of the Br spectra), for the deter-
mination of the component VC(r, θ) we use formula (7)
of [25] on the whole region of r (without using (8) of [25]).

According to (14)–(20) of [25], we calculate the param-
eters as follows:

v(A,Z,Q) = −(30.275− 0.45838Z/A1/3 + 58.270I

−0.24244Q),

rm = 1.5268 +R,

R = Rp(1 + 3.0909/R2
p) + 0.1243t,

Rp = 1.24A1/3(1 + 1.646/A− 0.191I),

t = I − 0.4A/(A+ 200),

d = 0.49290.

(41)

According to [26], we see that the parameter β for
210Po is very small, and this points out the high degree of
sphericity of this nucleus. Therefore, for the calculation of
the Br spectra we note the following:
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– In the definition of rm(θ) and R(θ) we do not use (21)
and (22) of [25] (use is made of (15) from [25]).

– The formalism for the calculation of the Br spectra
(presented in sect. 3–10), is constructed on the basis
of the division of the total wave function into its radial
and angular components, i.e. under the assumption of
spherical symmetry of the decaying nucleus. Therefore,
for the nucleus 210Po our approach for calculation of
the Br spectra is applicable taking into account realistic
nuclear forces too.

Moreover, we calculate the radial wave function of the
decaying system for the potential (39)–(41). This gives us
the general solution for the wave function as a function of
the selected energy level for the α-decay. To obtain that
the found solutions describe the states of the decaying
system before and after the spontaneous photon emission,
we should take into account boundary conditions in initial
and final states. Here, we use the following conditions:

initial i-state: χi(r → +∞)→ G(r) + iF (r),

final f -state: χf (r = 0) = 0,
(42)

where ϕi,f (r) =
χi,f (r)

r
, F and G are Coulomb functions.

One should note that in contradiction to a scatter-
ing of the α-particle on the nucleus, where as bound-
ary condition for the initial i-state a finiteness of the ra-
dial wave function ϕi(r) should be used at point r = 0
(χi(r = 0) = 0), for the decay we choose the natural re-
quirement that the radial wave function tends to a form of
the radial spherical wave divergent outside in the asymp-
totic region (χi(r → ∞) tend to a plane wave moving
to the right). This condition gives us inevitably the diver-
gence of the total radial wave function in the initial i-state
at point r = 0 (whose real and imaginary parts consist of
regular and singular solutions)! One can make sure about
this by requiring the fulfillment of the continuity condi-
tion for the radial wave function on the whole region by
its definition; or by requiring the constancy of the radial
flux density, which is distinct from zero and is directed
outside in the asymptotic region (and, therefore, it should
be non-zero near the point r = 0, that is impossible to
execute with null wave function at any chosen point of r).
This peculiarity essentially complicates the calculations
of the Br spectra for the α-decay in comparison with the
problems of the calculation of the Br spectra for the scat-
tering of charged particles on nuclei (where considerable
progress has been achieved and a lot of papers have been
published).

It turns out that the real and imaginary parts of the
sub-integral function of (17) for the calculation of the ma-
trix elements, constructed on the basis of the found solu-
tions for the wave function for the initial and final states,
tend to zero at the point r → 0! This interesting peculiar-
ity provides the convergence of the matrix elements near
the point r = 0 and, therefore, in the whole region of
r (in the asymptotic region the convergence of the wave
function is determined by the convergence of the Coulomb

functions, considered above). Thus, we resolve the diver-
gence problem in the calculations of the Br spectra in the
α-decay of the nucleus 210Po.

The Br spectrum for the nucleus 210Po with the α-
nucleus potential (39)–(41) by our approach and calcu-
lations is shown by the curve labelled with number 7 in
fig. 1. From here one can see that the new curve 7 of
the Br probability is located very close to the curve 4 for
the Br probability with the potential from sect. 9 with
a simplified barrier (and also close to the curve 6 from
approaches [7,9]).

Conclusions:

– The consideration of nuclear forces essentially changed
the shape of the barrier in its internal part (and essen-
tially changed the Br from this internal region), and
changed very slowly the spectrum of the total Br in
the α-decay of the nucleus 210Po (in comparison with
the earlier obtained Br spectrum on the basis of the
potential from sect. 9 with a simplified barrier).

– This point confirms the result (obtained earlier on the
basis of the α-nucleus potential pointed out in sect. 9
with a barrier of simplified shape) that the Br emission
from the internal region up to the point r for the bar-
rier maximum gives a very small contribution to the
total Br spectrum. This conclusion coincides logically
with the property (found on the basis of microscopic
models of nuclei with their α-decay) of propagation of
the α-particle from the nuclear surface during the first
decay stage.

12 Conclusions and perspectives

We presented a new method of calculation of BrS spec-
tra in the α-decay, where the angle between the directions
of the α-particle motion (with tunneling) and the photon
emission (used in the experiments [4,5]) is taken into ac-
count. Using it, the angular spectra for the nucleus 210Po
are obtained for the first time. Now let us formulate the
main conclusions and perspectives:

– The method gives a dependence of the bremsstrahlung
spectrum in the α-decay of 210Po on the angle (this has
been obtained for the first time):
– the first approximation at l = 0 gives independence

of the spectrum from the angle;
– the second approximation at l = 1 gives a slow

monotonous variation of the slope of the spectrum
curve with changing the angle and without a visi-
ble change of the shape of the spectrum curve (i.e.
without the appearance of humps and holes in the
spectrum);

– for arbitrary energy of the photon emitted in the
range of w = 50–750 keV the bremsstrahlung prob-
ability is maximal at the angle 0◦ and is minimal
at the angle 180◦, between these angular values the
bremsstrahlung probability varies monotonously.

– Results for 210Po have obtained on the basis of these
approximations:
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– the bremsstrahlung process does not depend on
the direction of the leaving α-particle relatively to
the shape of the daughter nucleus before the pho-
ton emission (this assumption has been fulfilled for
210Po, because, in accordance with [26] (see fig. 5
on p. 33), coefficients β0λ of the shape deformation
for this nucleus at λ = 2, 4, 6, 8 are extremely close
to zero in comparison with other nuclei with other
numbers of protons and neutrons, i.e. 210Po is one
of the most spherical nuclei);

– the photon emission does not change the direction
of the α-particle propagation (this assumption is
suitable for the low-energy photons, and, therefore,
it is applicable for analysis of all existing experi-
mental data of the bremsstrahlung spectra, where
one can select a region with smaller photons ener-
gies for increasing the accuracy);

– the bremsstrahlung spectra have been calculated
by means of the α-nucleus potential with the sim-
plified barrier pointed out in sect. 9 (they coincide
with the α-nucleus potential in [21], and also with
the potential with the external Coulomb field in [9]
and in [7]) and with use of the α-nucleus potential
with the barrier, pointed out in sect. 11 (see [25])
and constructed on the basis of realistic nuclear
forces.

– Taking into account nuclear forces in the method gives
the following:
– it does not change dependences on the angle of the

bremsstrahlung probability in the first and second
approximations;

– it essentially changes the shape of the barrier in
its internal region (sufficiently changes the Br from
such internal region) and changes very little the
spectrum of the total Br in the α-decay for the
nucleus 210Po at selected angle values.

From here a question naturally arises: which improve-
ment should be made in the method that results in enough
visible changes of the Br spectrum curve, to achieve a bet-
ter description of the experimental data? Note the follow-
ing:

– According to our calculations, in consideration of the
possibility of the α-particle leaving at the energy of
the excited state of the decaying system, the an-
gle of the slope of the Br spectrum curve increases
(monotonously). Apparently, it allows to displace the
calculated Br curve (for example, by our method) es-
sentially closer to the experimental data [1].

– For obtaining reliable values of the Br spectra for the
α-decay one needs to achieve in the calculations the
convergence of integrals for such spectra. This leads to
the necessity to consider wave functions inside a large
space region with the external boundary far enough
from the nucleus. From here a new question naturally
arises as to taking into account electrons shells of the
atom with such nuclear α-decay in the calculation of
the Br spectra in the α-decay and one can formulate
the following hypothesis about the visible influence of
the electrons shells of the atom on the total Br spec-

trum in the α-decay. One can note that an essential
progress has been made by M. Amusia in the study of
the Br in atomic physics [27,28]. Moreover, according
to [29] (see pp. 20–21), there is an inevitable influence
of the α-decay process at its starting time stage on
the electrons shells of the atom whose nucleus decays.
So, the α-particle during its propagation (with tun-
neling) deforms and polarizes these electrons shells.
In one’s turn, the changed electrons shells can correct
our understanding of the real α-nucleus potential in
the model, which should be used for the calculation
of the Br spectra (one should note that these effects
are still not studied in details). Note that these effects
(partially) take place in the same space region, where
it is necessary to use the wave functions for the cal-
culation of the matrix elements to achieve converging
values of the Br spectra. Therefore, it is desirable to
study these effects to obtain more accurately the total
Br spectra of the α-decay.

– The inclusion of the α-nucleus potential from [25] in
our method, deforming the decay barrier, does not es-
sentially displace a point, where the α-particle starts
to tunnel through the barrier. It turns out that the
displacement of this point is much smaller in compari-
son with the tunneling region and even with a “mixed
region”, as introduced in [8]. Therefore, after taking
into account the realistic nuclear forces in the method,
the interest to analyze the Br from these regions (with
detailed study of the tunneling) remains.

– We assume that further development of the time for-
malism for the description of the Br in the α-decay
at its first stage will give new abilities in the accurate
description of the Br. One cannot exclude the assump-
tion about the appearance of “holes” in the Br spec-
tra (see [2,8]), that can allow to better describe the
experimental data [2,3]. However, in such a case it is
not clear how to connect this with the available exper-
imental data [1] without “holes” in the logical basis of
our method.

Now let us formulate conclusions which have a physical
sense and on the basis of the calculations for 210Po by our
model:

– The bremsstrahlung in the α-decay of spherical nuclei
depends on the angle extremely weakly. Taking into ac-
count nuclear forces, such dependence does not change
visibly.

– It is not enough to take into account only one angle for
the explanation of the difference between the experi-
mental spectra [1] and [2,3] for 210Po (which equals 90◦

and 25◦, respectively) on the basis of our model and for
the explanation of the difference between these exper-
imental spectra and the calculated curves averaged by
angle values in approaches [7–9] (that can be supposed
in [4,5]).

– The small visible change of the Br spectra after taking
into account the realistic nuclear forces in our method
confirms the result (obtained on the basis of the α-
nucleus potential from sect. 9 with the barrier of sim-
plified shape, see also [21]) that the Br from the inter-



S.P. Maydanyuk and V.S. Olkhovsky: Angular analysis of bremsstrahlung in α-decay 293

nal region till point r for the barrier maximum gives
a very small contribution to the total Br spectrum.
This conclusion becomes natural if we take into ac-
count such a property (found on the basis of micro-
scopic models of the α-decay) as the α-decay starts
when the α-particle leaves the nuclear surface.

In closing, supposing that the Br spectra in the α-
decay must change essentially with changing the angle
value, we note how this point can be explained, analyzing
this question from the following theoretical and experi-
mental aspects:

– One can explain this angular change of the
bremsstrahlung spectrum in this way:
– In the α-decay of (initially) spherical nuclei —by

the strong angular deformation of the decay bar-
rier and continuous redistribution of the electro-
magnetic charge (or “nuclear polarization” like the
polarization of the electrons shells during tunneling
of the α-particle, according to [29] (see p. 20–21)).
One can suppose that here non-central forces be-
tween the α-particle and nucleons of the daughter
nucleus, which exist in the barrier region mainly,
play an essential role. Note that a serious progress
was achieved early in a microscopic approach to
study the bremsstrahlung in scattering of the nucle-
ons and of the α-particles on light nuclei (see [30–
34]), in a study of the bremsstrahlung in collisions
between heavy ions and the nuclei (see [35]), and
in the non-microscopic approaches to study the
bremsstrahlung induced by protons during their
collisions on heavier nuclei (see [36]).

– In the α-decay of deformed nuclei —by the essen-
tial appearance of the angular anisotropy of the
α-nucleus potential. Then one can extract an in-
formation about the shape of the nucleus from the
angular bremsstrahlung spectra.

– Experimental confirmation of the change of the Br
spectrum in the α-decay of the spherical nuclei with
changing the angle value gives the following:
– It will prove the existence of important microscopic

forces between the α-particle and the nucleons of
the daughter nucleus, reinforcing the angular de-
formation of the barrier.

– It will prove a visible influence of the
bremsstrahlung on the dynamics of the α-
decay. In accordance with our model, it will be an
experimental confirmation of the effect of variation
of the barrier penetrability as a result of the
emission during tunneling of a charged particle, as
proposed in [20].

The angular analysis of the bremsstrahlung spectra
gives a new additional information about the α-decay.
Therefore, further angular experimental measurements of
the bremsstrahlung spectra will be of interest.

The authors express their deep gratitude to Dr I.E. Kashuba
for his valuable assistance in the development of numerical
algorithms for the calculation of the Coulomb functions with

higher accuracy, that has allowed to obtain a convergence in
the calculations of the bremsstrahlung spectra for 210Po.
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